Cloudera Moving Average


Eu me deparei com este artigo: que menciona como calcular a média móvel usando o Hadoop. Observe que todos os registros de uma CHAVE devem ser classificados e depois reduzidos. Agora, suponha que os registros de uma determinada CHAVE estejam espalhados por todos os fragmentos do cluster Mongo. Nesse caso, seria possível calcular a média móvel Eu entendo que Mongo faz o mapa reduzir em cada nó. O requisito principal para resolver este problema é garantir que todos os emissos para um mapa sejam reduzidos em uma única fase de redução. Se for esse o caso, Mongo Map Reduce nunca poderá resolver esses problemas. Existe algum mal-entendido básico. Além disso, com bilhões de linhas e petabytes de dados, por que a Hadoop Reduzir a fase não faz falta na memória, uma vez que tem que lidar com pelo menos várias TBs de dados mapeados. Perguntou 16 de maio 13 às 7:31 Você pode explicar por que Hadoop não afastou a memória por essa computação. Da minha compreensão, toda a redução acontecerá em um nó, onde todos os registros de uma CHAVE serão reduzidos. Isso deve resultar em uma enorme sobrecarga de memória nesse nó, uma vez que as TBs de dados precisam estar presentes lá. Como Hadoop lida com uma enorme quantidade de dados ndash P. Prasad 16 de maio 13 às 8:29 Eu acredito que, ao contrário de MongoDB, o hadoop, assim como o SQL ao processar uma grande associação, irá escrever coisas no disco e ler somente quando necessário O sistema operacional usando swap como suporte de memória temporário para certas coisas provavelmente. O MongoDB faz mais na RAM antes de gravar no disco, como tal, irá resgatar facilmente o ndash Sammaye 16 de maio 13 às 8: 37 Médias migratórias: quais são eles Entre os indicadores técnicos mais populares, as médias móveis são usadas para avaliar a direção da tendência atual. Todo o tipo de média móvel (comumente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinado, a média resultante é então plotada em um gráfico para permitir que os comerciantes vejam os dados suavizados, em vez de se concentrar nas flutuações de preços do dia a dia que são inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando a média aritmética de um determinado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e depois dividiria o resultado em 10. Na Figura 1, a soma dos preços nos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em conta os últimos 10 pontos de dados para dar aos comerciantes uma idéia de como um recurso tem um preço relativo aos últimos 10 dias. Talvez você esteja se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas de uma média regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser descartados do conjunto e novos pontos de dados devem vir para substituí-los. Assim, o conjunto de dados está constantemente em movimento para contabilizar os novos dados à medida que ele se torna disponível. Este método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) se move para a direita e o último valor de 15 é descartado do cálculo. Uma vez que o valor relativamente pequeno de 5 substitui o valor elevado de 15, você esperaria ver a diminuição da média do conjunto de dados, o que faz, neste caso, de 11 a 10. O que as médias móveis parecem Uma vez que os valores da MA foi calculado, eles são plotados em um gráfico e depois conectados para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos dos comerciantes técnicos, mas como eles são usados ​​podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico, ajustando o número de períodos de tempo usados ​​no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você se acostumará a elas com o passar do tempo. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e o que parece, bem, introduza um tipo diferente de média móvel e examine como isso difere da média móvel simples anteriormente mencionada. A média móvel simples é extremamente popular entre os comerciantes, mas, como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ele ocorre na seqüência. Os críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a esta crítica, os comerciantes começaram a dar mais peso aos dados recentes, que desde então levaram à invenção de vários tipos de novas médias, sendo a mais popular a média móvel exponencial (EMA). (Para leitura adicional, veja Noções básicas de médias móveis ponderadas e qual a diferença entre uma SMA e uma EMA) Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Para novas informações. Aprender a equação um tanto complicada para calcular uma EMA pode ser desnecessária para muitos comerciantes, já que quase todos os pacotes de gráficos fazem os cálculos para você. No entanto, para você geeks de matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há nenhum valor disponível para usar como EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Nós fornecemos uma amostra de planilha que inclui exemplos da vida real de como calcular uma média móvel simples e uma média móvel exponencial. A Diferença entre o EMA e o SMA Agora que você tem uma melhor compreensão de como o SMA e o EMA são calculados, vamos dar uma olhada em como essas médias diferem. Ao analisar o cálculo da EMA, você notará que é dada mais ênfase aos pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos de tempo utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente aos preços em mudança. Observe como o EMA tem um valor maior quando o preço está subindo e cai mais rápido do que o SMA quando o preço está em declínio. Essa capacidade de resposta é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que os dias diferentes significam As médias em movimento são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que deseja ao criar a média. Os períodos de tempo mais comuns utilizados nas médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será para as mudanças de preços. Quanto maior o período de tempo, menos sensível ou mais suavizado, a média será. Não há um marco de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual é o melhor para você é experimentar vários períodos de tempo diferentes até encontrar um que se encaixa na sua estratégia. Médias móveis: como usar o ThemCloudera Jobs A tabela abaixo analisa as estatísticas de conhecimento e experiência de produtos e serviços da Cloudera em trabalhos de TI anunciados em todo o Reino Unido. Incluído é um guia para os salários oferecidos em empregos de TI que citaram Cloudera nos 3 meses até 30 de janeiro de 2017 com uma comparação com o mesmo período nos dois anos anteriores. Os números abaixo representam o mercado de trabalho de TI em geral e não são representativos dos salários dentro da Cloudera, Inc. 3 meses até 30 de janeiro de 2017 Mesmo período de 2016

Comments

Popular Posts