Matriz De Autocorrelação Média Em Movimento
Objetivo: Verificar os lotes de Autocorrelação de aleatoriedade (Box e Jenkins, pp. 28-32) são uma ferramenta comumente usada para verificar a aleatoriedade em um conjunto de dados. Essa aleatoriedade é verificada pela computação de autocorrelações para valores de dados em diferentes intervalos de tempo. Se aleatório, tais autocorrelações devem estar próximas de zero para separações de tempo e intervalo. Se não aleatório, uma ou mais das autocorrelações serão significativamente diferentes de zero. Além disso, os gráficos de autocorrelação são usados na fase de identificação do modelo para os modelos de séries temporais médias autorregressivas Box-Jenkins. Autocorrelação é apenas uma medida da aleatoriedade Observe que não corretamente não significa aleatoriamente. Os dados que possuem autocorrelação significativa não são aleatórios. No entanto, dados que não mostram autocorrelação significativa ainda podem exibir aleatoriedade de outras maneiras. A autocorrelação é apenas uma medida de aleatoriedade. No contexto da validação do modelo (que é o principal tipo de aleatoriedade que discutimos no Manual), a verificação da autocorrelação é geralmente um teste suficiente de aleatoriedade, uma vez que os resíduos de modelos de montagem pobres tendem a exibir aleatoriedade não sutil. No entanto, algumas aplicações exigem uma determinação mais rigorosa da aleatoriedade. Nestes casos, uma série de testes, que podem incluir verificação de autocorrelação, são aplicados, pois os dados podem ser não-aleatórios de muitas formas diferentes e muitas vezes sutis. Um exemplo de onde uma verificação mais rigorosa da aleatoriedade é necessária seria testar geradores de números aleatórios. Lote de amostra: as correções automáticas devem ser próximas de zero para a aleatoriedade. Tal não é o caso neste exemplo e, portanto, a suposição de aleatoriedade falha. Esse gráfico de autocorrelação de amostra mostra que a série de tempo não é aleatória, mas sim um alto grau de autocorrelação entre observações adjacentes e adjacentes. Definição: r (h) versus h As tramas de autocorrelação são formadas por eixo vertical: coeficiente de autocorrelação onde C h é a função de autocovariância e C 0 é a função de variância Observe que R h está entre -1 e 1. Observe que algumas fontes podem usar o Seguinte fórmula para a função de autocovariância Embora esta definição tenha menor preconceito, a formulação (1 N) possui algumas propriedades estatísticas desejáveis e é a forma mais utilizada na literatura estatística. Veja as páginas 20 e 49-50 em Chatfield para obter detalhes. Eixo horizontal: intervalo de tempo h (h 1, 2, 3.) A linha acima também contém várias linhas de referência horizontais. A linha do meio está em zero. As outras quatro linhas são 95 e 99 bandas de confiança. Observe que existem duas fórmulas distintas para gerar as faixas de confiança. Se o gráfico de autocorrelação estiver sendo usado para testar aleatoriedade (ou seja, não há dependência de tempo nos dados), recomenda-se a seguinte fórmula: onde N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa ) É o nível de significância. Nesse caso, as bandas de confiança possuem uma largura fixa que depende do tamanho da amostra. Esta é a fórmula que foi usada para gerar as faixas de confiança na trama acima. Os gráficos de autocorrelação também são usados no estágio de identificação do modelo para montagem de modelos ARIMA. Neste caso, um modelo de média móvel é assumido para os dados e as seguintes faixas de confiança devem ser geradas: onde k é o atraso, N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa) é O nível de significância. Nesse caso, as bandas de confiança aumentam à medida que o atraso aumenta. O gráfico de autocorrelação pode fornecer respostas para as seguintes questões: Os dados são aleatórios É uma observação relacionada a uma observação adjacente É uma observação relacionada a uma observação duas vezes removida (etc.) É a série de tempo observada ruído branco É a série temporal observada sinusoidal A série temporal observada é autorregressiva. O que é um modelo adequado para as séries temporais observadas. O modelo é válido e suficiente. A ssqrt da fórmula é válida. Importância: Garantir a validade das conclusões da engenharia. A aleatoriedade (juntamente com o modelo fixo, a variação fixa e a distribuição fixa) é Um dos quatro pressupostos que geralmente dependem de todos os processos de medição. A suposição de aleatoriedade é extremamente importante para os seguintes três motivos: a maioria dos testes estatísticos padrão depende da aleatoriedade. A validade das conclusões do teste está diretamente relacionada à validade do pressuposto de aleatoriedade. Muitas fórmulas estatísticas comumente usadas dependem da suposição de aleatoriedade, sendo a fórmula mais comum a fórmula para determinar o desvio padrão da amostra: onde s é o desvio padrão dos dados. Embora fortemente utilizados, os resultados da utilização desta fórmula não têm valor a menos que a suposição de aleatoriedade seja válida. Para dados univariados, o modelo padrão é Se os dados não são aleatórios, este modelo é incorreto e inválido, e as estimativas para os parâmetros (como a constante) tornam-se absurdas e não válidas. Em suma, se o analista não verificar aleatoriedade, a validade de muitas das conclusões estatísticas torna-se suspeita. O gráfico de autocorrelação é uma excelente maneira de verificar essa aleatoriedade.8.4 Modelos médios em movimento Ao invés de usar valores passados da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados em um modelo semelhante a regressão. Y c e theta e theta e dots theta e, onde et é ruído branco. Nós nos referimos a isso como um modelo de MA (q). Claro, não observamos os valores de et, por isso não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser pensado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel que discutimos no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, ao mesmo tempo em que o alisamento médio médio é usado para estimar o ciclo de tendência dos valores passados. Figura 8.6: Dois exemplos de dados de modelos em média móveis com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0.8e t-1. Direito: MA (2) com t e t - e t-1 0.8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com zero médio e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com os modelos autorregressivos, a variância do termo de erro e apenas alterará a escala da série e não os padrões. É possível escrever qualquer modelo AR (p) estacionário como modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e amp phi13y phi12e phi1 e et amptext end Provided -1 lt phi1 lt 1, o valor de phi1k diminuirá quando k for maior. Então, eventualmente, obtemos et et phi1 e phi12 e phi13 e cdots, um processo de MA (infty). O resultado reverso é válido se importamos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado de inversível. Ou seja, podemos escrever qualquer processo inversor de MA (q) como um processo AR (infty). Os modelos invertidos não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que os tornam mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaria. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar desses constrangimentos ao estimar os modelos.
Comments
Post a Comment